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Thermocapillary flow near a hemispherical 
bubble on a heated wall 

By Y. S. KAOT AND D. B. R. KENNING 
Department of Engineering Science, Oxford University 

(Received 8 December 1971) 

The flow driven by variations in surface tension round a hemispherical gas or 
vapour bubble on a heated wall has been investigated numerically for steady-state 
conditions over a wide range of values of dimensionless parameters, and experi- 
mentally for one set of conditions. Although six parameters are needed to specify 
the flow conditions, the magnitude of the liquid flow normal to the heated wall is 
determined primarily by tihe Marangoni number, Prandtl number and the Biot 
number based on the effective heat-transfer coefficient at the liquid-gas interface. 
The interior temperature of the bubble depends in addition on the thermal 
conductivity ratio of the liquid and the wall material. The flow is very sensitive 
t o  the presence of surface-active contaminants. For water, calculations and ex- 
perimental observations both indicate that contamination which lowers the static 
surface tension by only 0.1 yo may suppress the thermocapillary motion. 

1. Introduction 
When a small gas bubble rests on a heated wall the difference in surface tempera- 

ture betiween its base and tip causes a surface tension gradient which induces 
a jet-like flow of liquid away from the wall along the bubble axis, see figure 1. 
Although the net surface tension force on an element of the interface is opposed 
by viscous shear stresses in both bulk phases, the shear stress in the liquid is 
generally much larger than that in the gas, which is therefore neglected. The 
dimensionless parameters defining the flow are then the liquid Prandtl number 
Pr and the Marangoni number 

where a is the bubble radius, q the wall heat flux measured at a position not 
influenced by the presence of the bubble, and the liquid has thermal conduc- 
tivity k, thermal diffusivity a, viscosity p and surface tension y. (The tem- 
perature coefficient of surface tension dy/clT is negative for pure liquids.) The 
Marangoni number can be regarded as the product of Prandtl number and a 
Reynolds number with characteristic velocity V defined by relating the viscous 
shear stress to the surface tension gradient: 

Present address: Department of Mechanical Engineering, University of British 
Columbia. 
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FIGURE 1. Mechanism of thermocapillary motion. 

For vapour bubbles, evaporation and condensation at  different parts of the 
surface reduce the temperature differences driving the flow. Following the method 
of Gaddis & Hall (1968)' this situation is handled analytically by using an effec- 
tive interfacial heat-transfer coefficient hi between the liquid a t  the interface and 
the interior of the vapour phase, derived from kinetic theory by Schrage (1953) 
as approximately 

where g is the accommodation coefficient, hfg the latent heat, R the gas constant 
for the vapour and T andp the saturation temperature and pressure respectively. 
(Gaddis & Hall neglected the mean vapour velocity relative to the interface and 
obtained a similar expression for hi with 2 g / ( 2  - g) replaced by (r.) The widely 
differing values of the accommodation coefficient r~ which have been reported 
for water cause some difficulty in calculating hi from ( 3 ) .  The value of CT has 
been the subject of recent investigation in connexion with the condensation of 
liquid metals and indications are that it is close to unity for clean interfaces 
(Wilcox & Rohsenow 1969), but that its apparent value is much reduced by the 
accumulation of permanent gases at  the interface and by surface contamination. 
If water behaves in a similar manner, a pure steam bubble at atmospheric pres- 
sure would have a very high interfacial heat-transfer coefficient of about 15 MW/ 
m2 O K  (2 .8  x 106B.Th.U./ft2 h O F )  while a gas bubble would have a very low co- 
efficient, leading to a nearly adiabatic boundary condition at its surface. Two 
dimensionless groups are associated with the heat transfer at  the interface: the 
Biot number 

gives the ratio of the thermal conductances through the bubble and through the 
surrounding liquid, while the second group e, containing the liquid specific heat 

Bi = ahi/,% (4) 

6 = a2chiq/hfgk2, c, and defined by 
( 5 )  
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FIGURE 2. Suppression of flow by a surface film. 

is a measure of convection due to the liquid motion induced by evaporation and 
condensation at the interface. Most of the surface tension difference which is the 
primary cause of fluid motion develops close to the liquid-vapour-solid inter- 
face and is affected by the ratio of the liquid and solid thermal conductivities, 
K = k& . For relatively large bubbles natural convection effects become 
significant, depending on the Rayleigh number 

Ra = a%qPp/k4lp, (6) 

where g is the gravitational acceleration and ~3 the thermal expansion coefficient 
of the liquid. The equations and boundary conditions containing these groups 
and the methods employed for their solution are summarized by one of us 
(Y.S.K.) in the a’ppendix and are discussed in detail by Kao (1970). 

McGrew, Barnford & Rehm (1966) and Brown (1967) have suggested that ther- 
mocapillary flows might be an important mechanism of heat transfer in boiling; 
Larkin (1970) emphasized their possible significance in low gravity situations 
while Gaddis (1!368) discussed their indirect effect on heat transfer by influencing 
the conditions for bubble nucleation. Larkin obtained time-dependent numerical 
solutions for the flow at 0 < Ma < lo6, Pr = 1,5 near a gas bubble (Bi = 0 )  on 
a wall with a constant-heat-flux boundary condition for an initially isothermal 
system. He found that the flow built up quickly then gradually declined with time 
but he was unable to continue the solution until a steady-state was reached 
because of the enormous amount of computer time required. Gaddis obtained 
series and finite- difference numerical solutions for the steady-state flow round a 
bubble on an i~othermal wall at 0 < M a  < 125, 0 < Bi < 100, the range of 
interest for bubble nuclei in boiling water. The present investigation extends 
Gaddis’s steady-state solutions to 0 < Ma < 2.5 x lo5, 0 < Bi < 5000 and ex- 
amines the effect of local temperature variations in the solid wall. The calculated 
flow patterns compare satisfactorily with flow visualization experiments on a 
gas bubble at  Maxangoni numbers of about 104. Limited computer time precluded 
the numerical investigation of transient conditions. 

Liquids are rarely entirely free of soluble surface-active contaminants (surfac- 
tants) which tend to suppress the flow caused by surface temperature gradients. 
The contaminants adsorb on the bubble, forming a surface film which is carried 
by the flow towa,rds the tip of the bubble, figure 2. Since the film can escape only 
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FIGURE 3. Theoretical model. 

by a relatively slow process of desorption and diffusion it produces a boundary 
condition of near-zero velocity over the top part of the bubble. Any liquid flow 
generated near the bubble compresses the film, causing variations in the con- 
centration of the surfactant with accompanying surface tension gradients which 
override the effects of temperature gradients and oppose the flow. Although some 
flow is necessary to compress the film, it may be confined to such a small region 
as to be undetectable when contamination exceeds a certain level. The thermo- 
capillary flow has been calculated for bubbles with stagnant caps of varying ex- 
tent to  obtain order-of-magnitude estimates of the effects of contamination. 
Again the estimates are in reasonable agreement with experiments on gas bubbles. 
Because of the non-uniform distribution of the contaminant at the interface 
analyses regarding such systems as pure fluids, using temperature coefficients 
of surface tension for the surfactant solutions measured under static conditions, 
are invalid. 

2. Method of analysis 
The energy and Navier-Stokes equations for the liquid and the conduction 

equation for the solid wall were written in finite-difference form and solved 
numerically (see appendix) for a bubble positioned over a hemispherical cavity 
in a thick wall heated by a uniform flux on its rear surface, see figure 3 (a). This 
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Radius 
(d 
10-2 
10-2 

lo-* 
10-3 

10-4 
10-4 

Heat flux 
(W/cm2) 

300 
30 

300 
30 

300 
30 

Ma Bi 
1.8 x lo5 
1.8 x 104 

2.3 x 103 
2.3 x 103 

1-8 x lo8 
1.8 x lo2 
18 23 
1.8 23 

2.3 x lo2 
2.3 x lo2 

E Ra 
1.9 x 108 68 
1.9 x 102 5.8 
19 6.8 x 10" 
1.9 6.8 x 
1.9 x 10-1 
1.9 x 10-2 

6-8 x lo-' 
5.8 x lo-* 

TABLE 1. Valuer3 of non-dimensional parameters for vapour bubbles in water at 373 OK 

geometry is appropriate for bubble nuclei in boiling but ib is only an approxima- 
tion for larger bubbles resting on a wall, see figure 3 (b). Distances were made non- 
dimensional with respect to the bubble radius: 

rf = ./a, y f  = y/a,  (7) 

and temperatures with respect to the temperature difference between the wall 
and the surface y' = 1 in the liquid far from the bubble: 

(8) 

Trial solutions showed the importance of using a fine grid near the base and axis 
of the bubble so a non-uniform spacing was adopted: angular steps A8, = 1.5' 
were used for 0 < 8 < 12O, 72" < 8 < 105" and A8, = 3.0" for 12O < 8 < 72", 
105" < 19 < 180". A new radial co-ordinate z was defined by 

T'(r', 0 )  = (T! - T(r, 0)) k / q .  

(9) r' = ee 

and uniform steps AZ = 0.054 were used. The resulting grid near the liquid- 
vapour-solid interface was much smaller than that used by Larkin (1970) and 
Gaddis (1968) and gave an error of less than 4% when tested against Gaddis's 
series solution for bubble temperature at  M a  = 0, Bi = 100, whereas his numerical 
solution was in error by 20 yo. The required boundary conditions distant from 
the bubble of negligible liquid velocity (zero stream function $) and uniform heat 
flux were applied at finite radial distances from the bubble centre of 8.7 radii for 
H a  < 500 and :13-3 radii for M a  > 500, it being confirmed by trial that this 
choice had negligible effect on the computed values of maximum stream function 
and bubble interior temperature. Since the number of dimensionless parameters 
defining the flow was embarrassingly large it was not feasible to examine all 
possible combinations of their values. Attention was generally restricted to the 
ranges of values appropriate to vapour bubbles in water at  373 OK, table 1. 
The convergence of the numerical solution provided a further constraint when 
conditions generated strong thermocapillary flows: for Bi = 0 computation time 
became excessive ( > 2 hours on the I.C.L. KDF 9 computer) for 1Ma > 500, but 
for Bi = 1000 computation was possible up to Ma = 2.5 x lo5 
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I 
FIGURE 4 (a, b) .  For legend see facing page. 

3. Discussion of numerical results 
For the smaller bubbles in boiling, buoyancy effects on the flow are negligible 

(Ra -g 1). Typical streamlines and isotherms under these conditions are shown 
in figure 4. Liquid flows along the wall towards the base of the bubble, 
where it is sharply accelerated by surface tension gradients in the region 
80" < 0 < go", forming a jet normal to the wall. The jet diffuses, creating a ring 
vortex round the bubble axis. The strength of the thermocapillary flow is mea- 
sured by the maximum value of the non-dimensional stream function I&, at the 
centre-line of the vortex, q?; being defined by 

where 9 is the (dimensional) stream function representing the volumetric flow 
of liquid. For steady-state conditions there is no net heat transfer to the bubble, 
evaporation at  its base being equal to the condensation a t  its tip. The isotherm 
separating these regions corresponds to the temperature of the vapour in the 
interior of the bubble TL and far from the bubble reaches a distance from the 
wall yk = T:. (Note that an increase in T; corresponds to a reduction in bubble 
temperature relative to the wall temperature.) Isotherms in the liquid close to 
the wall suffer little distortion except very close t o  the bubble base so it is 
only in this limited region that there is a significant increase in the wall 
heat flux, see figure 5.  Evaporation and condensation at  the bubble surface 
cause some motion of the liquid but over the range of parameter values 

+; = Anlaa, (10) 



F I G ~ E  4. Calculated streamunes and isotherms for a pure liquid, 
buoyancy effects negligible, Ra = 0, Pr = 1.75. 

(4 (b )  (4 (4 (4 

11.3 113 1 000 1000 
2 050 2 050 25 000 250 000 

0 0 136 1362 
0-0152 0.0152 0.0152 0.0152 

Ma 2 050 
Bi 11.8 
E 0 
K 0.00 177 

46 
F L M  53 
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FIGURE 5. Local variations in wall heat flux. Bi = 113, Ra = 0, 
Pr = 1.75, E = 0, K = 0.0152. 

examined this effect is small compared with the thermocapillary flow and 
most calculations were performed with E = 0. The conductivity ratio K has a 
significant effect on the temperature distribution but not on the flow pattern or 
strength. Most calculations were performed with K = 0.015 (water on steel), 
with a few calculations at K = 0*0018 (water on copper) and K = 0. For calcula- 
tion of Th the limiting value K = 0 (isothermal wall surface) can be assumed only 
for H a  < 500; otherwise increasing K reduces the bubble temperature relative 
to the wall temperature (increased yh = Ti) and slightly reduces the flow rate. 

Variations in the Marangoni and Biot numbers do not greatly alter the flow 
pattern but do cause large changes in the magnitude of the velocities. For a 
Prandtl number of 1.75 and 0 < K < 0.015 the non-dimensional flow rate is 
given approximately by the empirical expression 

for 5 < i i a /B i  < 200, 61 < M a  < 5 x lo4 (figure 6), but the one calculation at  
a still higher M a  of 250 000 gave a flow 50 % below this correlation. The changes 
in bubble equilibrium temperature do not follow such a straightforward pattern, 
ranging from increases in Ti with increasing Biot number at low Marangoni 

$& = 0*17(Na/Bi)Q ( 1 1 )  
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FIGURE 6. Correlation of flow rate calculations. 0, Bi = 11.3; a, Bi = 113; 
V ,  ~i = 1000; n, ~i = 6000; e, A, es = 570; 0,  es = 720. 
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FIGURE 7 .  Variations in bubble equilibrium temperature (K  = 0.0152 except 
where indicated). Notation as in figure 6. 

number to decreases at  higher Bi and Ma,  see figure 7. The values of $; and TL 
for all cases investigated are summarized in table 2. The effects of changing the 
Prandtl number were not examined in any detail. With the choice of non-dimen- 
sional variables used in this work, the Prandtl number appears only as a divisor 
of the inertia term in the equation of motion of the liquid so this term is significant 
only at low Pr or at large flow rates. Calculations at Pr = 15.6 and Pr = 00 (no 
inertia term) gave values of $; within 5% of the values at  Pr = 1.75 for 
MalBi < 50 but gave values decreased by 40 yo at Ma/Bi = 180. Larkin (1970) 
found a similar decrea.se in local velocities in going from Pr = 1 to Pr = 5 at 

46-2 



724 

M a  

50 
500 
500 

61 
250 
500 

1250 
1875 
2 050 
2 250 

500 
500 

2 050 
2 050 

500 
500 

2 050 
5 000 

2 050 
61 

125 
2 050 
5 000 

2 050 
5 000 
5 000 

15 000 
25 000 
25 000 
50 000 

250 000 

50 
2 050 
2 500 
3 500 
5 000 

50 
500 

2 500 
5 000 
5 000 

50 
2 050 

2 050 
2 500 
2 500 
5 000 

Bi 
0 
0 
0 

11.3 
11.3 
11.3 
11.3 
11.3 
11-3 
11.3 
11-3 
11.3 
11.3 
11.3 

113 
113 
113 
113 

11.3 
11.3 
10.0 
11.3 

113 

113 
113 

1000 
1000 
1000 
5 000 
1000 
1000 

11.3 
11-3 
11.3 
11.3 
11.3 
11.3 
11.3 
11.3 
11.3 

11.3 
11.3 

11.3 
11.3 
11.3 
11.3 

113 
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Pr K 6 Ra 

1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.00177 0 0 

1-75 0 0 0 
1.75 0 0 0 
1.75 0 0 0 
1.75 0 0 0 
1-75 0 0 0 
1.75 0 0 0 
1-75 0 0 0 
1.75 0.0152 0 0 
1.75 0-00177 0 0 
1.75 0.0152 0 0 
1.75 0.00177 0 0 

1.75 0.0152 0 0 
1.75 0.00177 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 

15.4 0-0034 0 0 
co 0 0 0 
a3 0.0152 0.68 0 
a3 0.0152 0 0 
CQ 0.0152 0 0 

1.75 0.0152 11.2 0 
1.75 0.0152 27.2 0 
1.75 0.0152 27.2 0 
1.75 0.0152 81.8 0 
1.75 0.0152 136 0 
1.75 0.0152 136 0 
1.75 0.0152 272 0 
1.75 0.0152 1362 0 

1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1-75 0.0152 0 0 
1-75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 
1.75 0.0152 0 0 

1.75 0.0152 0 8.0 
1.75 0.0152 0 9.8 
1.75 0.0152 0 9.8 
1.75 0.0152 0 39.0 

TABLE 2. Summary of numerical results 

- 

8, 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

72 
72 
72 
72 
72 
57 
57 
57 
57 
57 
42 
42 

0 
0 

57 
57 

Y m  TI 
1.10 - 
15.2 - 
15.9 - 
0.48 0.40 
1.22 0.25 
1-95 0.22 
3.3 0-16 
5.1 0.17 
6.9 0.19 
7.9 0.20 
1.95 0.24 
1.95 0.22 
6.3 0.24 
6.7 0.20 

0.49 0.30 
0.50 0-27 
1.26 0.24 
2.05 0.19 

6.35 0.24 
0.48 0.40 
0.85 0.40 
3.6 0.20 
2.0 0.19 

1.25 0.23 
2.0 0.19 
0-55 0.14 
1.12 0.12 
1.46 0.11 
0.54 0.07 
2.0 0.10 
3.5 0.09 

0.11 0.57 
2.4 0.38 
2.7 0.36 
3.2 0.33 
3.8 0.29 
0-20 0-56 
1-6 0.27 
3.1 0-21 
4.7 0.19 
1.8 0.23 
0.31 0.50 
3.6 0.21 

4.8 0.27 
5.9 0.28 
3.7 0.26 
6.7 0.27 
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I 
FIGURE 8. Effect of buoyancy, pure liquid. (Orientation inverted for comparison with 

figure 4.)  Mu = 2050, Bi = 11.3, Ra = 8-0, Pr = 1-75, E = 0, K = 0.0152. 

Ma = 2000, Bi = 0. Equation (11) cannot be used for the limiting case Bi = 0; 
the two calculahions at Pr = 1.75 for this condition suggest the relationship 

$& = 0.013Ma1’14. (12) 
It was desired to compare the calculated flows with experimental observations 

on gas bubbles below a heated plate, described in 55. This orientation was 
chosen to give ab stable liquid layer in the absence of disturbance by the bubble. 
Observations could be made conveniently only on relatively large bubbles of 
radius > 1 mm. For this bubble size buoyancy terms in the equation of motion 
are no longer negligible so calculations were performed at Rayleigh numbers 
Ra (defined by 1:s)) up to 39. With increasing Ra the penetration distance of the 
jet leaving the bubble is reduced; the centre of the primary vortex moves in 
towards the bubble and weaker secondary vortices appear in the outer region, 
see figure 8. Although the overall flow pattern is changed, the flow associated with 
the primary vortex is not greatly affected. Variations in the temperature field 
are confined to it region closer to the bubble. No calculations were made for con- 
ditions under which buoyancy effects assist the thermocapillary flow. 
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4. Surface contamination 
Under conditions of static equilibrium, with no fluid motion whatsoever, the 

surface concentration molecules per unit area of a soluble surfactant is 
related to its bulk concentration c, in the liquid by the Gibbs adsorption equation 

where K is the Boltzmann constant and IT, is the 'surface pressure', the reduction 
in surface tension y. IT, is related to r by a surface equation of state which for 
dilute solutions approaches a form equivalent to the ideal gas equation: 

no/r = KT, (14) 

with IT,, I' and c, linearly related. The gradients of surface tension caused by the 
non-uniform distribution of surfactant at  the surface of a non-equilibrium, 
flowing system can be analysed on the basis of the 'local-equilibrium ' hypothesis 
that the above relationships still apply for an element of the surface and the 
liquid immediately adjacent to it, although there may be concentration gradients 
in the bulk phase and a net rate of transfer of surfactant between substrate and 
surface, i.e. it  is assumed that the local rates of adsorption and desorption are 
controlled entirely by diffusion and convection in the bulk liquid. Even for this 
linearized model the analysis is formidable, requiring simultaneous solution of the 
energy, Navier-Stokes and mass-transfer equations for the liquid with boundary 
conditions generated by the equations of motion and continuity of the surface 
film. However, further simplifications are possible. In  experiments on isothermal 
flows containing surfactants it is generally found that the surface can be divided 
into an upstream region in which gradients of surface concentration are negligible 
(zero surface shear stress) followed by a region of rapid transition to a nearly 
stagnant downstream region (zero surface velocity). A similar pattern is assumed 
for the present flow, with the bubble surface covered by a stagnant cap over the 
region 0 < 0, < 57" or 72" but with the temperature and surface tension gradients 
driving the flow in the wall region being uninfluenced by the presence of surfactant. 
In  the stagnant zone it is known a posteriori that surface temperature gradients 
are an order of magnitude smaller than in the wall region so the interaction of 
temperature and concentration gradients is not considered. With these boundary 
conditions the flow can be calculated numerically as before, without the need 
for simultaneous solutions of the surfactant mass-transfer equations. Since the 
shear stress in the stagnant part of the surface is equal to the gradient of surface 
pressure, the variations in surface pressure A n f  over this region can be calculated, 
see figure 9, where surface pressure has been made non-dimensional by the 
relationship I T f  = (a/a,u)IT. 

This distribution of surface pressure, and hence of bulk concentration in the 
adjacent liquid, provides the boundary conditions for the mass transfer of sur- 
factant. The concentration required to maintain the chosen extent of the stag- 
nant cap can then be determined by the method used by Kenning (1968) for 

(15) 
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FIGURE 9. Shear stress variation over stagnant cap. 

surface film formation in open channel flow. Even this simplified analysis may be 
of little practical use since values are required for the diffusion coefficient, mole- 
cular weight and ratio of surface to bulk concentration of the surface-active 
contamination and these are generally unknown. The only experimentally con- 
venient measure of the degree of contamination is the surface pressure II, (sur- 
face tension lowering) of a sample of the liquid, measured under conditions of 
static equilibrium. Fortunately figure 9 can be used to obtain an order-of-magni- 
tude estimate of the value of II, needed to produce a stagnant cap, without 
further information on the properties of the surfactant. The surface pressure 
differences in the stagnant zone develop close to its leading edge so the surface 
pressure and the corresponding bulk concentration in the film substrate are 
nearly constant over 0 < 8 < 8,. Because of this large area for mass transfer 
away from the surface the substrate concentration should not differ greatly from 
the bulk concentration in the interior of the liquid, which corresponds to a surface 
pressure of II,. For 8 > e,, the surface pressure should be very much less than the 
equilibrium value : surface elements are greatly expanded as they are accelerated 
away from the wall, reducing the surface concentration of surfactant and leaving 
little time for replenishment by diffusion from the bulk phase. Thus the total 
surface pressure difference across the stagnant cap should be nearly equal to the 
static lowering of surface tension no, irrespective of the precise properties of the 
contaminant. (This argument is peculiar to this flow configuration; in channel 
flow, for example, local values of surface pressure at  the downstream end of a 
surface film can exceed the static value by more than an order of magnitude.) In  
figure 10 calculated values of II' = (a/ol,u) II,, equal to the maximum values of 
AII' in figure !), are plotted against Ma/Bi for films extending to 8, = 57" and 72". 
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FIGURE 11. Calculated streamlines and isotherms with buoyancy effects md stagnant cap; 
0, = 57O, Bi = 11.3,Pr = 1.75,s = 0,K = 0.0152. (a )Ma = 2500,Ra = 9.8. ( b )  M a  = 5000, 
Ra = 38.9. 
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FIGURE 12. Experimental apparatus. 

No calculationtg were performed for the limiting case Bi = 0 but appropriate 
values of II’ can be read from figure 10 at  values of Ma/Bi corresponding to the 
same flow rate +;, since this should give approximately the same shear stresses 
on the stagnant film. For a 1 mm radius gas bubble in water at lo3 6 M a  < lo4 
(conditions of the experiments to be described in $5) the calculated range of 
II,, is 3 x to 3 x 10-ldyn/cm, a surface tension lowering of around 0-1 yo. 
The presence of a stagnant film reduces the mass flow of liquid considerably, 
see figure 6, particularly at low MalBi. With gravitational effects also present, 
circulation is significant only in a region close to the bubble, having little effect 
on the temperature distribution elsewhere, see figure 11. 

5. Experimental work 
The thermocapillary flow near a bubble was investigated with the apparatus 

shown in figure 12. An air bubble blown with a syringe through a hole in the upper 
heated plate was used rather than a vapour bubble since it conveniently gave 
steady-state conditions, although excluding any study of the effect of Biot 
number. The liquid flow was made visible by suspended ‘Eccospheres ’, hollow 
glass beads of 25pm diameter. It was essential to use a flow tracer which did not 
accumulate at  the bubble surface and Eccospheres were satisfactory in this 
respect in water (but not in methanol). The tracers were illuminated by a thin 
plane of light traversing the bubble axis and were photographed with a 35 mm 
camera at 1 : 1 magnification using an exposure of 1 s at f/4. The light source was 
a mercury vapour lamp flashing at 100Hz so velocity measurements could be 
obtained from the interrupted particle paths. 



730 Y .  S. Kao and D. B. R. Kenning 

10 10: 1 0 3  10‘ 

M u  

FIGURE 14. Experimental and theoretical flow rates. €, experimental, Pr N 4.5; 
0, computed, Pr = 1.75, Bi = 0. 

It was known from the estimates of the previous section that thermocapillary 
flows would be observable only if stringent precautions were taken to exclude 
surfactants. The water was distilled, passed through a ‘Bio-deminrolit ’ ion- 
exchange column, distilled with alkaline permanganate and finally redistilled. 
Its surface tension was within 0.2 dyn/cm of the International Critical Tables 
value for pure water, but could not be measured more accurately. The apparatus 
was constructed of copper, glass and ptfe, and was cleaned by immersion in 
warm chromic acid. It was often necessary to repeat the cleaning procedure 
several times to eliminate contamination : the only reliable test of the cleanliness 
of the equipment was the subsequent behaviour of the thermocapillary flow itself. 
This is consistent with the estimates of the previous section that the level of 
contamination producing significant effects for these experiments corresponds 
to a surface tension lowering of somewhat less than 0.1 dynlcm. 

A typical steady-state flow pattern is shown in figure 13 (plate 1) and follows 
the calculated pattern. Values of $; obtained from the flow traces are shown in 
figure 14 and lie close to the extrapolation of the calculated values. A direct 
comparison was not possible: with Bi = 0 the numerical calculations were limited 
by convergence problems to M u  < 500 and at such low values of M a  even the 
very small amount of residual surfactant in the water was sufficient to suppress 
most of the thermocapillary motion. At rather higher M a  the flow was partially 
suppressed so a stagnant cap could be observed on the bubble, see figure 15 
(plate 1). The presence of a cap covering only a small part of the bubble surface 
appeared to cause flow instabilities; the edge of the cap fluctuated and the flow 
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leaving the bubble swung from side to side, figure 16 (plate 2 ) .  The irregular 
motion of small rising bubbles may be due to a similar instability. 

Although transient conditions were not calculated they were studied experi- 
mentally for two different initial conditions. Following injection of a bubble 
into an established temperature gradient there was a strong initial thermocapil- 
lary flow with streamlines approaching the bubble at greater distances from the 
wall than in the steady state, see figure 17 (plate 2). The flow then declined some- 
what to the steady-state value over a period of about 150 s. Similar behaviour 
occurred if the gas bubble was formed in an isothermal system and heating then 
applied to the .wall, except that the period for establishment of the flow was 
rather longer owing to the thermal capacity of the heater. Qualitatively, the 
behaviour agreed with Larkin's (1970) calculations for liquid hydrogen. However, 
for water contaminated with surfactant the initial conditions could produce 
considerable differences in behaviour. For tap water with no = ldynlcm in- 
jection of a bubble into an existing temperature gradient produced a thermo- 
capillary flow which gradually died out over a period of about 120s, while no 
flow at all occurred with an isothermal initial condition. The longer contact time 
in the second case evidently allowed the formation of a surface film which in- 
hibited all thermocapillary motion. The surfactant properties certainly affect 
this behaviour, although this aspect of the problem was not investigated: with 
an inadequateliy cleaned system (but with IT, < 1 dynlcm) the flow was often 
suppressed even on bubbles newly injected into an established temperature 
gradient. 

6. Conclusion 
At Pr = 1.75 the liquid flow caused by a hemispherical vapour bubble is given 

by equation (11), but approaches the values given by equation (12) for low heat- 
transfer coefficjents a t  the bubble surface, e.g. for gas bubbles. An increase in 
Prandtl number tends to reduce the flow, but only at  relatively high flow rates 
when inertia terms in the equation of motion are significant. Although the flow 
rate generated by a bubble near the wall is not greatly affected by an opposing 
gravitational field the penetration of the hot jet into the surrounding liquid is 
reduced for Ra > 1, approximately. Steady-state thermocapillary flows are 
easily suppressed by surface-active contaminants, often at concentrations too 
low to be detected by surface tension measurements. Under transient conditions 
the flow rate mity initially exceed its final value by rather less than 50 yo. Surfac- 
tant contaminakion sufficient to suppress the steady-state flow may still permit 
some thermoca,pillary flow when a bubble is first injected into an established 
temperature gradient, but further investigation of the effects of surfactant pro- 
perties and concentration is required. 

This work Wits supported by Babcock & Wilcox (Operations) Ltd. 



732 Y .  8. Kao and D .  B. R. Kenining 

Appendix. Summary of equations and method of solution 
Following the method of Jenson (1959), the Navier-Stokes equation for the 

liquid phase (including a buoyancy term) is rewritten with stream function @ 
and vorticity w as functions of the spherical co-ordinates r and 8. These variables 
and the radial velocity u, tangential velocity v and temperature T are given 
non-dimensional values (denoted by a prime) as follows: 

@' = @la% w' = a2w/oI, 

a' = a+, v' = avla, 
T' = (Tw - T )  lclaq, r' = ./a. 

(A 1) i 
The equations then become 

ay oosea~;] (A2) 
= E2 (r'w' sine) -Bar' sin 8 sin8 + I - [ ar r ae 

aT; V'aT; 
u'- = V2T;, 0 G 8 G (liquid), 

ar' r 80 

V2Ti = 0, 471 G 8 G T (solid), (A51 

where 

(variables u' and v' are retained for convenience in the subsequent numerical 
operations). 

The boundary conditions are as follows. 
(a)  At large distances the disturbance due to the presence of the bubble dies 

away: the liquid is at rest; the temperature gradient in the liquid and wall is 
uniform. For the purposes of numerical calculation these conditions are applied 
at  a finite reference radius r;: at r' = r; 

$'= 0, w ' =  0 (A10)' ( A l l )  
T; = r;cose, 0 G e G in, (A  12) 

T; = Kricos8, &T G 8 G n. (A131 
(b)  At the liquid-solid interface the liquid is stationary and temperatures and 

normal components of heat flux are equal in the liquid and solid. For 8 = in, 
r' 1 

aTi aT; Ti = Tf, - - - K -  ae ae - 
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(c) At the liquid-gas interface the surface tension gradient is equal to the 
viscous shear stress in the liquid and the radial component of liquid velocity 
depends on the local rate of heat transfer. The conduction heat flux in the liquid 
is equal to the evaporation (or condensation) heat flux between the interface and 
the interior of the bubble at temperature TL; the net heat flow into the bubble 
is zero for the steady state. So for r' = 1, 0 Q 0 < &r 

r'=l 

For bubbles with a stagnant cap over the region 0 < 0 < t9 (A 18) applies only 
for e > e,, with 

V' = o for r' = 1, o < e 6 e,. (A22) 

aTA/arf = 0 for r' = 1, $ 7 ~  < 8 < 7 ~ .  (A23) 

I,P = W' = aT;lae = o for e = 0, (A241 

m;pe = o for e = n. (A251 

(d) At the solid-gas interface heat transfer is assumed negligible: 

(e) On the atxis of symmetry 

Since a grid with mesh size increasing radially is required for the finite- 
difference equations, a new co-ordinate z is defined by 

r' = 6, 
transforming the equations to 

where 

F = o'lezsine, (A3V 

(A331 G = w'dsin 0 = e% sina OF. 
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The boundary conditions become the following. 
(a)  On z = zf, equation (A 10) is still appropriate and 

F = G = O ,  

T; = ezf cos 8, 0 G 8 < in-, 
TL = KeZfcos 6, $n G 8 G T.  

(b )  On 8 = +T, equations (A 14)) (A 16) and (A 17) still apply and 

G = e-2e a2$’/a02 for z 2 0. (A 37) 

( c )  On x. = 0,  equations (A19), (A21) and (A22) apply and 

(d )  On z = 0)  QT < 8 < T ,  

a r r ; / a Z  = 0. 

(e) Equations (A24) and (A25) are used. L’Hospital’s rule is employed to find 
F and U’ as 8 -+ 0 :  

F = G/e2zsin2 8 = (a2G/a82)/2e2z, 

U‘ = - (a$’/aO)/e2zsin 6 = - (a2$’/ae2)/e22. 

(A41) 

( A 4 4  

The equations in z and the velocity components u’ and v’ at interior nodal 
points are converted to difference equations using conventional central differ- 
ence techniques for uniform intervals in x and 8. (Smaller iiitervals in 8 are used 
near the axes 8 = 0 and $T.) The boundary conditions are represented either 
by one-sided difference expressions or by introducing grid points beyond the 
physical boundary. Full details of the formulae used are given in Kao (1970). 

The integral TisinBdO is evaluated by the trapezoidal rule. Simpson’s rule, 

although more accurate, is inconvenient in this case since the integral can be 
evaluated only at  odd grid points. 

The difference equations were solved on an I.C.L. KDF9 computer using the 
Gauss-Xeidal iteration method with over- or under-relaxation. The appropriate 
value of the relaxation factor was determined by trial and error, and varied 
between 1.9 at low N a  to as low as 0.5 to achieve stability of the solution at  large 
Mu, low Bi. The calculations were started by using guessed values of Ti, Ti 
I)‘ and G to calculate improved values of Ti and TL. The new T; was then used to 
calculate an improved G and thence @‘, u’ and v‘. The procedure was then re- 
peated until the variables changed by less than a specified tolerance per iteration, 
usually taken as 10-4 except in a few cases, where a tolerance of 10-1 was used for 
G. The choice of initial values not only affected the computation time but also 
could induce divergence of the solution in some cases. This difficulty was reduced 
by using the final solution of a calculation at  low N u ,  high Bi as the initial guess 
for the next calculation at  higher M u  or lower Bi. 

su” 
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